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A Computat ional  Study of  Annular Cascade Flows 
Using a q-co Turbulence Model  with a Wall Function 
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A computational  code has been developed for steady viscous flows in three dimensional 

annular cascades. This code solves a special form of  the thin-layer Navier-Stokes equations with 

a two-equation q-co turbulence model in curvilinear coordinates using a time asymptotic method 

for steady state solutions. It employs a scalar implicit approximate factorization in time and a 

finite volume formulation with second-order upwind-differencing in space. A wall function 

treatment is implemented at solid boundaries for turbulence equations instead of integration to 

the wall to relieve gridding requirements. In order to validate the effectiveness of this code, 

computational studies have been made to access modeling capabili ty for complex turbulent flow 

fields in three dimensional annular cascade geometries which typically include laminar- 

turbulent boundary layer transition. The results have been compared with both the 

computational studies with integration to the wall and the experimental studies. The wall 

function treatment was found to be reliable by predicting secondary flows and loss contours 

reasonably well. 

Key W o r d s :  Cascade Flow. Turbine, Turbulence, Wall Function, Secondary Flow, Horse- 

shoe Vortex, Passage Vortex, Pressure Loss 

1. I n t r o d u c t i o n  

Accurate numerical simulation of viscous flow 

characteristics has become increasingly important 

for the advanced turbomachinery. Turbine cas- 

cades are of particular concern because of com- 

plex flow phenomena. To be useful in the cascade 

design process, the method should be able to 

efficiently predict complex three-dimensional tur- 

bulent flow structures including aerodynamic 

losses, exit flow angle variation, and the highly 

nonuniform surface heat transfer. These are signif- 

icantly influenced by strong secondary flow due 

to various types of vortices (horseshoe, passage 

and tip vortices) arising in cascade passages. 
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Associated Reynolds numbers are usually moder- 

ate, so laminar-turbulent boundary layer transi- 

tion is an essential part of this complex 

phenomenology. 

In response to the need to improve predictive 

techniques, the author has been involved in a 

research effort to develop computational fluid 

dynamic codes for transonic cascade flows. In 

prior efforts by Knight and Choi(1987) and Lee 

and Knight(1989), efficiency and accuracy of the 

thin-layer approximated Navier-Stokes code 

based on a scalar implicit approximate factoriza- 

tion and a finite volume formulation were demon- 

strated for linear cascades including detailed 

comparison to experiments. A two-equation q-co 

turbulence model suggested by Coakley(1983a) 

was found to give encouraging success in predict- 
ing laminar-turbulent boundary layer transition 

when turbulence model equations were integrated 

to the sublayer resolution down to .v + -  1. This is 
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believed to be a key factor in predicting accurate 

heat transfer coefficients. 

There is still a room for improvement of these 

codes in terms of practical use. The developed 

Navier-Stokes codes require a relatively large 

computer memory due to a fine grid structure 

needed to resolve turbulent boundary layers, 

about 50 Mbytes for typical three-dimensional 

simulations. Such a memory capacity is hardly 

available in mini-class computers which are get- 

ting popular in industry and research organiza- 

tions, Consequently many are often forced to use 

coarse grid structures so that turbulent boundary 

layers are not properly resolved. Theoretical 

studies by Goldberg and Reshotko(1983) and 

Horstman(1984) and recent experimental results 

by Eibeck and Eaton(1985) also indicate there 

may be a logarithmic region in general. These 

facts motivated the study to assess wall function 

treatments for the q-co turbulence model which 

could lead to significant reduction of griddmg 

requirements for three-dimensional cascade flow 

computations. In a previous work by Kreatsoulas 

et a1.(1988), the wall function treatment was used 

for the computation of a rectangular Stanitz 

elbow duct (Stanitz et al., 1953) and was found to 

give reliable results with secondary flows and loss 

contours essentially indistinguishable from those 

for integration to the wall. 

This paper covers the extension of the wall 

function treatment to three-dimensional cascade 

flows. In this study, a wall function treatment was 

used to relieve gridding requirements, and inte- 

gration to the wall using low turbulence Reynolds 

number modeling was also used when needed for 

comparison. A primary issue addressed in this 

study was a systematic evaluation of wall func- 

tions in the context of complex three-dimensional 

internal flow fields involving strong secondary 

flows. Rather than trying to prove the existence of 

a logarithmic region in general, the approach is to 

address the utility of such an assumption in situ- 

ations representative ofturbomachinery flow envi- 

ronments. 
In Stanitz elbow case, boundary layers at the 

inlet region were all turbulent, so laminar- 

turbulent boundary layer transition was not a key 

consideration. That is no longer true in real 

cascade flows. However, boundary layer transi- 

tion model was not incorporated in the present 

study only since no reliable one is yell one hands. 

Therefore, boundary layer at solid walls will be 

considered turbulent as often assumed in many 

other turbulence modelings. This will provide an 

opportunity to assess the importance of laminar- 

turbulent boundary layer transition in cascade 

flow fields and to make decision whether further 

study about a proper transition model will be 

useful in the future development. 

The numerical formulation and modeling are 

first summarized before proceeding to prelimi- 

nary code validation. The basic algorithm and 

wall function modeling are first assessed in a 

two-dimensional turbine cascade, which was 

experimentally studied by Langstion et a1.(1977). 

This includes comparison to results of integration 

to the wall approach and the experiment at 

midspan. The code is then applied to the three- 

dimensional viscous flows of a subsonic annular 

cascade of turbine vanes, studied experimentally 

by Goldman and Seasholtz(1982) and a transonic 

annular  turbine stator studied, experimentally by 

Gardner(1979) on the Energy Efficient Engine 

(E 3) geometry. Computed results were compared 

with both results computed using integration to 

the wall method by Choi and Knight(1988) 

and the relevant experiments. 

2. Analysis 

2.1 Governing equations 
The governing equations used in this study 

are the Reynolds averaged compressible three- 

dimensional Naiver-Stokes equation. The con- 

servation law form of these equations can be 

written in a Cartesian coordinate system 

8 t  8.v + 8 v  + 8z  - " 

where 

pzt2+p - r~l 

F :  P i l l  .!'--- ~'21 

O t t W - -  r3J 
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The static pressure and total energy for a perfect 

gas are given as 

p = p R T ,  

E =  P + ~ ( u 2 + v 2 + w = ' ) ,  (3) 
7 I , 

where 7 is a ratio of specific heats. 

The total stress tensor and heat flux vector 

which include both molecular and turbulent con- 

tributions by means o f  eddy viscosity hypothesis  

are represented by 

8u,  ~- 8 u , -  , , 8 u ,  
, " - ) - ' A - - ~ - - - - O u ,  r,~ = 12 ( &v., 8x,  c~.r~- 

q = - k  ~ T  

~ = / - & + / t r ,  

k =  ~zz _~ /z~ (4) 
P r  PrT ' 

where (x~, xz, .v3)--(x, y. z), etc., and ~L and /z7 

are the molecular and turbulent (eddy) viscosities 

and thermal conductivity, k, is expressed in terms 

of  the Prandtl numbers. 

Molecular viscosity is related to the static tem- 

perature via Sutherland's law and eddy viscosity 

is obtained from the two-equation q-w turbulence 

model. It is assumed that the second coefficient of 

viscosity, A = - / I  to simplify the viscous terms. 

This assumption is believed to cause little error 

since dilation effects are considered insignificant 

for transonic flows. Constant values are used for 

the Prandtl numbers. 
The governing equations are transformed to 

boundary-conforming curvilinear coordinates.  
This is currently based on a sheared H-grid, with 

a careful control of transverse grid smoothness 

and specification of the normal distance of the 

first cell center offwalls.  By transforming only the 

independent variables (x, y, z) to the com- 

putational coordinates (6, ~, ~'), the strong con- 

servation law form can be maintained as 

~ r ( ~ P  + (~(~ ' ~fi" =0, (5) 8U 
8t  J 8~ 8~ + 8~ 

where 

P=(F~. ,  + GS.,. ~- H4~)/J, 

/ t  = (F~'~ + G [ , -  H ~ ) / J ,  (6) 

for a time-independent grid, where (6, ~, ~) are 

computational  coordinates, and J is the determi- 

nant of the transformation Jacobian matrix 

computed by 

J : d e t [  ~I ~_'- z22 ; )  ] o(.v, y ,  z )  J (7) 

Recognize that Cartesian velocity components 

are retained as dependent variables. This required 

special care in constructing similarity transforma- 

tions so that periodicity can be imposed properly. 

but it simplified evaluation of terms as well as 

conversion from earlier linear cascade codes. 

Viscous terms are incorporated via a special form 

of the thin-layer approximation which has been 

found to maintain accuracy on highly skewed 

grids, as noted in Knight and Choi(1987). 

2.2 Turbulence  model  

Two-equation turbulence models seem to offer 

reasonable accuracy as well as ease of use in 

many turbulent flow calculations. In this study, 

Coakley's q-co turbulence model (Coakley, 1983a) 

was chosen because of  its numerical compatibil i ty 

with the asymptotic time integration scheme. That 

is, timestep restrictions due to stiff turbulence 

source terms in the sublayer are minimal compar- 

ed to other two-equation models. Particularly, 

prediction capabili ty of  heat transfer and 

laminar-turbulent transition phenomena has been 

very encouraging. 

The dependent variables of this two-equation 

model are directly related to the turbulent kinetic 

energy, k, and dissipation rate. r via q = k  ~;2 and 

w - E / k ; t h e y  define a turbulent velocity scale 

and inverse time scale, respectively. With these 
variables, eddy viscosity becomes 

/-~r OC~,DqZ/co, (8) 
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and near-wall damping function D for integration 

to the wall case is defined as 

refined mesh spacing. The classical form of law- 

of-the-wall is 

D =  1 - exp(  - aoqd~//zL), (9) 

where Cu =0.09, and a=0.0065, and d~ is defined 

using a Buleev length scale (Buleev, 1963) in 

terms of the normal distance to the nearest airfoil 

and endwall surfaces. In case of tbe wall function 

treatment, D becomes 1.0. 

The conservation law form of transport equa- 

tions for turbulent variables in the Cartesian 

tensor notation is given as 

~ ( p q ) + ~ ( p u ~ q )  

= 3xi vrq ox,.j  w - w ) '  

-~ (  pco ) + ~-~l  pu,co ) 

[ ' uT ' ~ PLo Ox, 
_ a ( ~ , + _ _ ~ _ _  + p(C1Cl lO-C2co  2) O.~'i 

(10) 

where the strain rate invariant O=(zto-+ u,~)u~j. 
The flow dilation has been dropped in both 

turbulence source terms and (9 as negligible for 

transonic flows. Turbulent constants used are the 

same as in the original publication. 

C1=0.045 +0.0405D ([.'2=0.92 

P r  q = l .O P r ~ = l . 3  

In case of integration to the wall, making C~ 

dependent on D is believed to be one reason that 

the q-co model can be made relatively insensitive 

to timestep selection. Use of low turbulence 

Reynolds number terms also provides the possi- 

bility of rapid growth of q when C~DO ~ co ~. This 

enables to emulate the laminar-turbulent transi- 

tion phenomenon as reported in many earlier 

studies. This capability is expected to be lost 

when the wall function treatment is used because 

D = I .  

2.3 W a l l  f u n c t i o n  t r e a t m e n t  

The basic purpose of a wall function treatment 

is to circumvent the need to resolve the viscous 

sublayer by assuming universality of the law-of- 

the-wall. This can considerably relieve near-wall 

gridding requirements, and also avoids stiffness 

due to turbulence source terms as well as highly 

z ,  , , , ,  
~r X 

where u~=(r~, /p)  ~'~ is a characteristic: frictional 

velocity scale, x =0.4 is yon Karman's constant, y 

measures distance normal to the wall, u is the 

kinematic viscosity, and A = 5 . 5  for a flat plate. 

This relation applies in the logarithmic region 

between the viscous sublayer (e. g., y+i-~yttr/~ > 
30) and the law-of-the-wake region in the outer 

boundary layer for a wide variety of two- 

dimensional flows, 

A variety of generalizations of Eq. (11) is to be 

found in the literature ; the most widely used one 

is 

where q is a turbulent velocity scale as defined 

before. In the logarithmic region, it happens that 

q~. u~C/TM where C ,=0 .09  enters the eddy vis- 

cosity de f in i t ion ; thus ,  x * ~ x C ~  II4 and E * ~  

EC~, L;4 are to be expected, where E = 9 . 1 3  is 

directly relatable to A in Eq. (11) 

The primary reason for preferring Eq. (12) 

derives from its heat transfer counterpart : 

_pCp( T.~,- T)_qq = l l n ( q y E h ] ,  (13) 
Qw Xh \ ~ I 

where T is temperature, Q,,, is the wall[ heat flux 

per unit area, and alternate constants Xh and Eh 

are involved. In a separated flow, measurements 

indicate that the heat transfer rate is near its 

maximum at the reattachment point, a behavior 

that is at least qualitatively reproduced by this 

form (Launder, 1984). Howerver, the counterpart 

of Eq. (11) would predict no heat ransfer where 

the shear stress is zero. A secondary advantage of 

Eq. (12) is that iteration for u;  and hence r,, at 

each timestep is avoided. 

Implementation details will be explained in 

two-dimensions, recognizing the grid structure 

involves a cell face at boundaries. Cell centers are 

denoted by integers in that follows, flux bound- 

aries by integers plus [/2, and the wall[ is at the 
cell face "3/2." Basic relationships are 
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() \ p 13:2 Y'2 Yt \ 1'2 / '  

q l - ( l ' . ' - "  2(q:~ <]2) Y3,2 Y 2  
3'3 - -  Y'2 

0,, (141, 
\ ~'7'4 / '  ' 

where all quantities at the flux boundary are 

evaluated by arithmetic averaging for consistency 

with the original coding, and the expression for (a 

represents asymptotic linear behavior in the logar- 

ithmic region. Recognize that above quantities 

below the wall (i. e., i n d e x = l )  are fictitious 

physically and have meaning only in the sense 

that they assure proper transport at the first flux 

boundary. 

Values of x* and E* were chosen to give 

reasonably accurate predictions of skin-friction 

for a flat plate boundary layer with zero pressure 

gradient, This was accomplished by setting x* 

x / f l ,  E * = E / / 3 ,  and optimizing /3 based on the 

skin-friction coefficient. Two-dimensional studies 

led to /3=2, a value about 10 percent larger than 

C,, ~4 estimated from relations after Eq. (12). 

That value was not adjusted for the three- 

dimensional studies, nor was any other turbulence 

constant. 

A basic issue in extending wall function treat- 

ments to three-dimensional cases is when flow 

turning ceases as the boundary is approached. 

because application of Eqs. ( 11 ) or (12) implicitly 

assumes fixed flow angle. Theoretical work by 

Goldberg and Reshotko(1983) indicates that there 

generally is a logarithmic region, with flow turn- 

ing beginning for y + > 4 0 ~ 7 0  and primarily 

occurring in the defect layer. The treatment in the 

present study assumes the limiting flow angle is 

achieved well outside the sublayer and is fixed for 

much smaller values of y -  in applying Eq. (12). 

Note that restrictions on y* at the first flux 

boundary arise in order for this to be assured. 

These are generally more stringent than for two- 

dimensional flows, and in consequence the gains 

for complex three-dimensional flow fields may 

not be as large. For three-dimensional cases, "'5"" 

is again treated as a Buleev-type variable measur- 

ing distance to walls. 

2.4 Numerica l  method 

The steady solution to the governing equations 

is obtained using the asymptotic time integration 

scheme based on a scalar implicit approximate 

factorization algorithm. This involves iterative 

application of a linear operator of the form : 

L ( S / ,  U)- 8U= JU, (15) 

where ~,T is the change in solution over timestep 

St, z / U = - R  ~ 8t represents the degree of un- 

steadiness, and/x ''~ is the residual vector evaluated 

from steady flow terms at time level n. Finite 

volume formulation is employed with flux bound- 

aries coinciding with walls. 

Residual is evaluated explicitly based on 

second-order upwind-differencing scheme suggest- 

ed by Coakley(1983b). Advantages of this method 

over central-differencing plus damping are the 

substantial improvements in speed and accuracy. 

The dissipation function for this scheme is 

evaluated based on nonconservative variables and 

characteristic increments. This can be illustrated 

by considering the discretization of F' in ~ direc- 

tion. 

- -  -+ ( ,+l,,e--F,-l,'2), (16) a~ &e 

where &e = I, and the asterisks denote addition of 

numerical damping to assure near monotone 

behavior, 

4 ,  9 1 F,+, ,_--7(  F1 + l~+l - D,.~1,2) (17) 

Similarity transformations arising from character- 

istics theory are used in evaluating the dissipation 

function D 

D,+.2= a];;~;~ + 8/,+~,~- a/,'-x,~ + a/, +~,~. 
+ I 

%5,,e = TS,~,<e (IA,+,,,_4 +_A<+,<,) 

S,<.,~( U , < -  U,) ,  (18) 

where S is a matrix of left eigenvectors associated 

with s e direction, A is a diagonal matrix of corre- 

sponding eigenvalues, and c~f defines characteris- 

tic increments. Elements of S and A are evaluated 

at the cell face using Roe's averaging (Roe, 1981 ). 

For the implicit update procedure, the scalar 

form of the approximate factorization algorithm 

is employed. Using the similarity transformation 



A Computational Study of Annular Cascade Flows Using a q-oo Turbulence... 247 

by characteristic theory, transformed inviscid flux 

Jacobian matrices 

aP a8 ai-2 A = f f ~ - ,  B=~-~- ,  C - ~ ,  (19) 

can be diagonalized as 

A = S~IA~S~, 
B=S~IA~S~, 
C = S?IA~S~, (20) 

where S and A are defined as before. 

Since the Jacobians for viscous terms cannot be 

diagonalized, viscous terms are treated approxi- 

mately by adding a second derivative times the 

maximum eigenvalue of the viscous Jacobian for 

each of the transverse direction. This results in a 

following differential form 

(I + JSt ~--ff A~)" S~SU* = S~AU, 

~ ) . S ~ 3 U * *  ( I + ] 3 t  o- -~A~+I3t~  8z] 

= S~SU* 

(I+JSt  ofifA~+ __82 Iatuc~z)" S~SU = S~SU* * 

(21) 

Sine the coefficient matrices, A and u, are diago- 

nal with respect to characteristic increments, solu- 

tions to Eq. (21) require a sequence of linear 

transformations and scalar algebraic relations, 

which implies much fewer calculation than for a 

block implicit scheme. 

First-order upwinding was used for the discret- 

ization of inviscid terms and central differencing 

was used for viscous contributions. This leads to 

scalar tridiagonal systems and provides accept- 

able convergence. Accuracy of the final steady 

solution is, of course, not affected by this choice 

of differencing scheme for the implicit part. 

A similar treatment of turbulent source terms 

through the implicit coefficient matrix originally 

suggested by Coakley(1983a) was found less than 

promising in the present code structure. This was 

replaced by a suitable scalar approximation to the 

Jacobian of the turbulence source terms, which 

was incorporated in a post-processing step to 

make it perform better for a sudden start calcula- 

tion. 

The boundary conditions are treated fully ira- 

plicitly in order to maintain the high convergence 

rate of the overall implicit method. Extraneous 

boundary conditions also arise with second-order 

accurate differencing scheme, such as deter- 

mination of the static pressure at solid walls. The 

approach used for this kind of boundary condi- 

tions is to employ a first-order accurate treatment 

for implicit update procedure, and then correct 

results explicitly to satisfy full second-order accu- 

racy. This essentially eliminates timestep restric- 

tions associated with boundary conditions and 

maintains simplictity. 

In order to accelerate convergence, dual time- 

step selection criteria are also used to determine 

local timesteps which spatially vary. With CFL 

--3 in the inviscid core and much larger CFL in 

viscous-dominated regions, comparable conver- 

gence rates in coarse and refined grid regions 

were achieved. Details of boundary condition 

treatments and dual timestep selection scheme 

was described in Knight and Choi(1987). 

3. R e s u l t s  and D i s c u s s i o n s  

Three sets of test cases were computed to assess 

performance of the present analysis method. The 

first one is for a large scale Langston linear 

cascade (Langston et al., 1977). Others are annu- 

lar cascades ; one is for a NASA subsonic annular 

vane studied experimentally by Goldman and 

Seasholtz(1982), and the orther is for the NASA 

Energy Efficient Engine(E 3) annular vane with an 

S-shaped tip-side endwall investigated by Gard- 

ner(1979). 

3.1 Langston cascade 
A two-dimensional version of the p'resent 

method was first developed and validated by 

considering the large scale Langston linear cas- 

cade. A case considered in the present study is the 

cascade set at an inlet angle of 44.6 ~ The up- 

stream inlet Mach number was 0.1 and the exit 

Mach number was about 0.16. The corresponding 

Reynolds numbers based on axial chord length 

were 5.5• l0 s and 1.0• I06, respectively. Mea- 

sured inlet free stream turbulence quantities are 

not available, so free stream turbulence intensity 

was assumed to be 30/00 . 
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Integration to the wall calculations were done 

for the midspan profile on a simple sheared 

H-grid with 81 • points in ~ and r2 direction, 

respectively. The minimum axial grid spacing 

near the leading edge and trailing edge was 0.005 

C• and the maximum axial grid spacing was 0.05 

C• where Cx is the axial chord length. Near the 

blunt trailing edge, the grid spacing on the blade 

surface was determined by using 10 ~ angular in- 

crements to adequately describe its circular shape 

there. The normal .distance of the first grid point 

from the blade surface was chosen as 1 • 10 -4 Cx 

to ensure sublayer resolution down to y+--  1. The 

wall function treatment calculation employs 36 

grid points in ~7 direction with minimum spacing 

of 1 • 10 -3 C• With this minimum grid spacing, 

the center of the first cell off the wall locates 

sufficiently away from the viscous sublayer in 

most region. The further reduction of number of 

[ /  

Fig. 1 

k 
,\ 

Midspan static 

/ 

pressure coefficient contours 
for the Langston linear cascade 

tL " ~ C7.~\ 

} '  + '  .... )(::i 
i :,,;: Y ~  X i ~ : !  

Fig. 2 Midspan Mach number contours for the 
Langston linear cascade 

grid points in r2 direction can be easily anticipat- 

ed, but was not accomplished only due to the 

failure of grid generation algorithm. 

Figures 1 and 2 compared the contours of the 

static pressure coefficient and Mach number at the 

midspan, respectively, where the static pressure 

coefficient was defined based on the upstream 

dynamic head. Note that the contour patterns in 

computational results are essentially unaffected 

by the wall function treatment. Measurement data 

were not available for comparison. Figure 3 

shows the axial distribution of the static pressure 

coefficient at blade surfaces. As expected from 

Fig. 1, excellent agreement between corn- 

Cp 
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putational results was achieved. Both solutions, 

however, show slight disagreement at the suction 

surface after the choke point with the experiment. 

Sharp peaks at the pressure surface were due to 

the separation at the rounded trailing edge, which 

was not measured in the experiment. 

Axial variations of the skin-friction coefficient 

at the suction surface are compared in Fig. 4. 

There are notable discrepancies between two 

solutions. The result obtained by integration to 

the wall method shows rapid decrease of  skin- 

friction near the mid-chord region while the wall 

function treatment produced smooth decrease 

over the entire suction surface. This is due to the 

10 
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6 
o 
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Axial variation of skin-friction coefficient on 
the suction surface of the Langston linear 
cascade 

lack of  laminar-turbulent boundary layer transi- 

tion mechanism of the wall function treatment. 

This can be seen more evidently in Fig. 5 

showing U + versus In ( Y ' )  velocity profiles in 

boundary layer at several axial locations. In these 

figures, circles represent the computed values of U+ 

and ln(Y +) at each grid cell and solid lines 

indicate the typical law-of-the-wall for the flat 

plate, U+=2.441n (Y~)+5.0.  Close observation 

of  results computed by integration to the wall 

shows that a transition from laminar to turbulent 

happens at x=0 .05  C~, relaminarization occurs 

near ,v =0.5 Cx, and flow goes through the second 

laminar-to-turbuleut transition near x =0.9  Cx at 

the suction surface. Here x measures from the 

leading edge. On the other hand, velocity profiles 

at the suction surface boundary layer computed 

by the wall function treatment are turbulent every- 

where as expected. 

Relaminarization predicted with integration to 

the wall method deserves further study though. In 

a previous study (Lee and Knight, 1989), 

relaminarization did not occur with O - H  grid 

formulation, which is believed to produce better 

prediction especially in the boundary layer 

region. Based on the present results, the wall 

function treatment performs reasonably well in 

terms of predicting the pressure distribution in the 

cascade passage despite lack of capabil i ty predict- 

ing boundary layer transition at least in two- 

dimensional flow analysis. This could, however, 

mean that the transitional effect is insignificant in 

determining pressure distribution. 

3.2 Subsonic NASA stator 
The code was later extended to the three- 

dimensional subsonic annular stator cascade stud- 

ied experimentally at NASA Lewis. The detailed 

cascade geometry and experimental configuration 

can be found in Goldman(1982). Mean values of  

exit Mach number was about 0.8 and 0.7 at the 

hub and tip, respectively. The untwisted vanes, of  

constant profile from hub to tip, had a height of 

38.10mm and an axial chord of 38.23 ram. The 

stacking axis of the vane was located at the center 

of the trailing edge circle. The vane aspect ratio 

and the solidity at the mean radius based on the 

axial chord were 1.0 and 0.93, respectively. The 



stator hub-tip radius ratio was 0.85 and the tip 
diameter was 508 mm. 

In the present calculation with the wall func- 
tion treatment, many meshes with different mini- 
mum grid spacings were tried to ensure that the 

first grid points locate in the logarithmic region in 
most boundary layer. The best solution among 
tried ones was obtained with a total number of  98, 
112 computational grid points (73 • 32 • 42 ; they 
are numbers of grid points in the axial, circumfer- 
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ential, and radial directions, respectively.) A 

minimum grid spacing in the circumferential 

direction is 2.5 • 10 -a Cx, and the maximum grid 

spacing is about 5 percent of circumferential pitch 

at each radial position. In the radial direction, the 

minimum grid spacing of  2.5 • l0 -~ C• is used at 

both hub and tip surfaces, and the maximum grid 

spacing is also 5 percent of the span distance. In 

the original study with integration to the wall by 

Choi and Knight(1988), a total number of  grid 

points was 171,696(73 • 42 • 56) with minimum 

grid spacings were 1 • 10 -4 Cx in both the circum- 

ferential and radial directions. Therefore, the gain 

due to grid saving is 1.75 with the wall function 

treatment. Converged results were achieved much 

faster than the integration to the wall approach 

with 500 timesteps. 

Figure 6 shows the axial distribution of the 

static pressure on blade surfaces for three repre- 

sentative spanwise locations. As shown in these 

figures, computational results are indistinguish- 

able and they compare very well with the corre- 

sponding measurements except only at the suction 

surface near the hub. The spanwise distributions 

of  the static pressure mass-averaged across the 

pitch are also compared in Fig. 7. They show 

outstanding agreement, too. These results are 

surely expected because pressure variations on 

blade surfaces are mainly inviscid phenomena. 

Accuracy of  the wall function trea~Iment can be 

found in the loss prediction and the flow angle 

variation at exit plane, which are mainly due to 

viscous effects of  the flows. 

Figure 8 shows the flow angle variation versus 

the radial direction at after-mixed flow condi- 

tions. The predicted values are taken at about 29 

percent of  the chord length downstream from the 

trailing edge, and the experimental data was 

measured at 33 percent chord dow~Lstream. This 

difference due to a grid structure is almost negli- 
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gible. These are averaged based on mass flux 

along tile circumferential direction at a given 

radial location. The wall function treatment pre- 

dicts much flatter variation of  exit angle in the 

core part of the span compared to both the result 

computed by integration to the wall and the 

measurement, although predicted values are still 

within the accuracy of the measurement, • 1.2", 

This implies that the strength of the secondary 

flow at endwalls is predicted much weaker than it 

should be. Such underprediction is more evident 

at the hub region than the tip region. 

The same observation can be made in the 

comparison of  the mass-averaged total pressure 

loss predictions at the same exit location shown in 

Fig. 9. These total pressure loss predictions agree 

very well with the experiment except at about 15 

percent of  the span near the hub. The wall func- 

tion treatment underpredicted the loss while inte- 

gration to the wall overestimated it in that region. 

This indicates that both formulation did not 

accurately handle passage vortex development, 

The vane efficiency contours based on kinetic 

energy are compared in Fig. 10. Note that the 

passage vortex locations near the tip are well 

predicted by the wall function treatment when 

compared to the m e a ~ - , ' - -  
eh~"'"  " 



A Computational Study o f  Annular Cascade Flows Using a q-w Turbulence... 253 

20" 

16" 

12-  

Q. 

o 
I-- 

0 
0.0 012 

Fig. 9 

O 0 0 0 0 0 0 ~ O ~ i ~  

20 

16" 

o 12- 

== 

~- 8- 

I-- 
4" 

' ' Computation 
o Measurements 

Goldman 

' - " ' - - " ~ O O u ~ O r O  
0 

o14 o76 0'8 l o o o 0'2 o14 0.'6 0'8 I o 
(R-RH)/Span (R-RH)/Span 

Spanwise variation of mass-averaged total pressure loss at X :  1.33 C• for the 
NASA subsonic vane 

TIP TIP H 

"! \, 

Ht/a 

Fig. 10 Efficiency contours at X= 1.33 Cx for the NASA subsonic vane 

7 
v ~  

On the other hand, integration to the wall shows 

excellent agreement with the experiment. This 

required further study about the detailed inform- 

ation on turbulent quantities and passage vortex, 

which will be reported in the future. 

3.3 Transonic  NASA E E E  vane 

Evaluation of the wall function was performed 

for the transonic flow through a twisted annular 

vane in a single-stage with 0.35 reaction, which is 

one of the energy efficient uncooled rig tested by 

Gardner(1979). Mach number at the after-mixed 

condition is about 1.01, the Reynolds number 

based on exit free stream condition and vane axial 

chord length is about 1.3 x 106 and the design exit 

flow angle is 10.4'. 

For the wall function treatment, a mesh of 74, 

752 grid points (73 x 32 x 32) was generated using 

simple algebraic relationships. In the original 

study using integration to the wall approach by 

Choi and Knight(1988), a mesh of 7 3 •  

(--128, 772) grid points was used for this case. 

The factor of grid saving with these meshes is I. 

72. This factor should not be regarded small since 

the original grid was considered rather coarse to 

have a good resolution of the turbulent boundary 

layer. Minimum and maximum grid spacing are 

1 x 10 -3 Cx and 0.05 C~, respectively, in both 

circumferential and radial directions. In the origi- 
nal grid, minimum and maximum spacings were 

2.1 x 10 -4 C• and 0.105 C• in the circumferential 

direction, and they were 1.7 x 10 -4 C~ and 0.085 

Cx in the radial direction, respectively. 

Figure 11 shows the axial distribution of the 

static pressure profiles on the vane surface for 

three spanwise locations. As in the subsonic case, 

both computational results show no discernible 
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difference and compare well with the measure- 
ments. These solutions, however, show minor 
defects near the suction surface trailing edge. In 
Fig. 12, area-averaged exit Mach number profiles 
at 1.4 Cx downstream from the trailing edge are 
compared with measurements. The precise axial 
location of measurements was not available. 
Although computed solutions show good agree- 
ment, they do not match the measured data well 
in 20% of the span near the hub. Both solutions 
show much thinner boundary layer thickness at 
the hub side. The previous study mentioned the 
inability to match unknown detailed inflow con- 
ditions including free-stream turbulence quantities 

and incoming boundary layers as a possible cause 
of  this discrepancy. This issue could not be 
resolved in this study. 

Distributions of computed exit flow angle, 
shown in Fig. 13, again compare rather poorly 
with measurements in the hub side half. Figure 14 
compares the spanwise variation of total pressure 
loss at an exit plane, defined at each radial loca- 
tion by area-averaging along the circumferential 
direction. It is surprising to see that loss values 
predicted by the wall function treatment are al- 
most twice higher than the measured values at the 
core region while it severely underpredicts the 
flow turning near the hub. Figure 15 shows the 
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total pressure loss contours at the exit plane. As 

in the subsonic vane case, predictions at the hub 

side by the wall function treatment are in poor 

agreement with measurements while those 

computed by integration to the wall show reason- 

ably good formation. 

In general, the current wall function treatment 

failed to predict correct development of the secon- 

dary flow formation, especially near the hub 

region. This is somewhat disappointing since the 

similar treatment show promising features in 

earlier Stanitz elbow calculation by Kreatsoulas 

et a1.(1988). In three-dimensional cascade flows 

such as ones computed in this study, horseshoe 

vortices as well as passage vortices have signifi- 

cant effects in the development of the secondary 

flow, while passage vortices is the only dominant 

secondary flow mechanism in the duct flow. 

Consequently, the present wall function can be 

said to be insufficient to capture the precise 

development of the horseshoe vortex in cascade 

flows. This is believed to be due to eddy viscosity 

computed too high in core region compared to 

integraion to the wall results, as also observed in 

the Stanitz elbow calculation. Absence of an 

intermittency factor in the current two-equation 

model can be a primary reason for such high eddy 

viscosity production. Inclusion of streamline 

curvature effects notable in the swirl flow can be 

a possible remedy. Effects of transitional phenom- 

ena on the development of the passage vortex 

should be also investigated. 

4. Conclusion 

A wall function treatment was developed for 

the two-equation q-w model and was tested in 

annular cascade geometries. Based on a detailed 

computational study comparing it with integra- 

tion to the wall and experiments, the wall func- 

tion treatment was found to perform reasonably 

well in predicting general characteristics of cas- 

cade flows. Improved computational economy 

was provided with reduction of grid points. Also, 

convergency rate is considerably enhanced com- 

pared to integration to the wall. 

The capability to describe accurate formation 

of strong secondary flows, however, does not meet 

the expectation. To predict correct development 

of horseshoe vortices in cascade flows, inclusion 

of an intermittency factor and stream curvature 

effect associated with swirl flows should be care- 

fully considered to curtail the high eddy viscosity 

predicted by the wall function treatment in the 

core region. More complete validation of the wall 

function treatment must include the evaluation of 

heat transfer prediction and appropriate bound- 

ary layer transitional models. 

Acknowledgment 

This research was conducted under the sponsor- 

ship of Textron Lycoming's Research and Devel- 

opment Program. ] wish to thank the management 

of Textron Lycoming and Korea Aerospace 

Research Institute for their support and permis- 

sion to present these results. 

References 

Buleev, N., 1963, "Theoretical Model of the 

Mechanism of Turbulent Exchange in Fluid 



A Computational Study of  Annular Cascade Flows Using a q-w Turbulence... 257 

Flows," Atomic Energy Research Establishment, 
Hartwell, England, AERE Translation 957. 

Choi, D. and Knight, C.J., 1988, "Computation 
of 3D Viscous Annular Cascade Flows," AIAA- 
88-3092, AIAA/ASME/ASEE 24th Joint Propul- 
sion Conference. 

Coakley, T.J., 1983a, "Turbulence Modeling 
Methods for the Compressible Navier-Stokes 
Equations," AIAA-83-1693, 16th Fluid and Plas- 
madynamics Conference. 

Coakley, T.J., 1983b, "Implicit Upwind Me- 
thods for the Compressible Navier-Stokes Equa- 
tions," AIAA-83-1958, 6th Computational Fluid 
Dynamics Conference. 

Eibeck, P.A. and Eaton, J.K., 1985, "An Exper- 
imental Investigation of the Heat Transfer Effects 
of a Longitudinal Vortex Embedded in a Turbu- 
lent Boundary Layer," Report MD-48, Thermo. 

Division, Dept. of Mechanical Engineering, Stan- 
ford University. 

Gardner, W.B., 1979, "Energy Efficient Engine, 
High-Pressure Turbine Uncooled Rig Technology 
Report," NASA CR-165149. 

Goldberg, U. and Reshotko, E., 1983, "Scaling 
and Modeling of Three-Dimensional, Pressure- 
Driven Turbulent Boundary Layers," AIAA-83- 
1695, 16th Fluid and Plasma Dynamics Confer- 

ence. 
Goldman, L.J. and Seasholtz, R.G., 1982, 

"Laser Anemometer Measurements in an Annular 
Cascade of Core Turbine Vanes and Comparison 
with Theory," NASA Technical Paper 2018. 

Horstman, C.C., 1984, "A Computational 
Study of Complex Three-Dimensional Compress- 

ible Turbulent Flowfields," AIAA-84-1556, 17th 
Fluid Dynamics, Plasma Dynamics, and Lasers 
Conference. 

Knight, C.J. and Choi, D., 1987, "Development 
of a Viscous Cascade Code Based on Scalar 
Implicit Factorization," AIAA-87-2150, AIAA/  
SAE/ASME/ASEE 23rd Joint Propulsion Con- 

ference. 
Kreatsoulas, J.C., Lee, D., Ballantyne, A. and 

Knight, C.J., 1988, "Experimental/Computa- 
tional Study of Viscous Flow in a Contracting 
Rectangular Elbow," AIAA Journal, Vol. 26, pp. 
1434-- 1441. 

Langston, L.S., Nice, M.L. and Hooper, R.M., 
1977, "Three-Dimensional Flow Within a Tur- 
bine Cascade Passage," ASME J. of Engineering 
for Power, Vol. 99, pp. 21--28. 

Launder, B.E., 1984, "Second-Moment Clo- 
sure : Methodology and Practice," Turbulence 
Models and Their Applications, Vol. 2, Editions 
Eyrollers, Paris, France. 

Lee, D. and Knight, C.J., 1989, "Evaluation of 
an O-H Grid Formulation for Viscous Cascade 
Flows," AIAA-89-0207, 27th Aerospace Sciences 
Meeting. 

Roe, P.L., 1981, "Approximate Riemann 
Solvers, Parameter Vectors, and Difference 
Schemes," J. of Computational Physics, Vol. 43, 
pp. 357--372. 

Stanitz, J.D., Osborm W.M. and Mizisin, S., 
1953, "An Experimental Investigation of Secon- 
dary Flow in an Accelerating, Rectangular Elbow 
with 90 ~ of Turning," NACA 3015. 


